If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x-273=0
a = 5; b = 4; c = -273;
Δ = b2-4ac
Δ = 42-4·5·(-273)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-74}{2*5}=\frac{-78}{10} =-7+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+74}{2*5}=\frac{70}{10} =7 $
| 2+18-15x=50 | | -25.15x=-125.75x | | 2(t-3)=28 | | 7x+x+40+2x=180 | | 8x+4=–20 | | -6(1-6k)+5=-1+3k | | 1-2n=5n-6 | | -6(1-6k)+5=-1+4K | | 5x=7.2 | | 3p^2-13p+14=0 | | 30+12r=66 | | -3(x-7)=3-6x | | -17-5b=6(6+8b) | | 9+4x-2x³=0 | | -3=3/2y | | 7(-8+4x)=28+7x | | -10=1/4w | | 256m^2+4=0 | | 3=r+239 | | 20+.80m=116 | | y+6.6=32.1 | | 1/3x+2=17 | | 13=-5t+8 | | -165.832=—10.91k | | 253=-x+41 | | 49=-y+241 | | 2i-4=9 | | u÷8=2 | | 49=-y-241 | | 5x+20=420 | | 8^2=8x^2 | | 6x+20=420 |